Identification and Characterization of a Novel Gentisate 1,2-Dioxygenase Gene from a Halophilic Martelella Strain

نویسندگان

  • Ling Huang
  • Haiyang Hu
  • Hongzhi Tang
  • Yongdi Liu
  • Ping Xu
  • Jie Shi
  • Kuangfei Lin
  • Qishi Luo
  • Changzheng Cui
چکیده

Halophilic Martelella strain AD-3, isolated from highly saline petroleum-contaminated soil, can efficiently degrade polycyclic aromatic hydrocarbons (PAHs), such as phenanthrene and anthracene, in 3-5% salinity. Gentisic acid is a key intermediate in the microbial degradation of PAH compounds. However, there is little information on PAH degradation by moderately halophilic bacteria. In this study, a 1,077-bp long gene encoding gentisate 1,2-dioxygenase (GDO) from a halophilic Martelella strain AD-3 was cloned, sequenced, and expressed in Escherichia coli. The recombinant enzyme GDO was purified and characterized in detail. By using the (18)O isotope experiment and LC-MS analysis, the sources of the two oxygen atoms added onto maleylpyruvate were identified as H2O and O2, respectively. The Km and kcat values for gentisic acid were determined to be 26.64 μM and 161.29 s(-1), respectively. In addition, optimal GDO activity was observed at 30 °C, pH 7.0, and at 12% salinity. Site-directed mutagenesis demonstrated the importance of four highly conserved His residues at positions 155, 157, 167, and 169 for enzyme activity. This finding provides new insights into mechanism and variety of gentisate 1,2-dioxygenase for PAH degradation in high saline conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular characterization of an inducible gentisate 1,2-dioxygenase gene, xlnE, from Pseudomonas alcaligenes NCIMB 9867.

Pseudomonas alcaligenes NCIMB 9867 (strain P25X) produces isofunctional enzymes of the gentisate pathway that enables the degradation of xylenols and cresols via gentisate. Previous reports had indicated that one set of enzymes is constitutively expressed whereas the other set is strictly inducible by aromatic hydrocarbon substrates. The gene encoding gentisate 1,2-dioxygenase (GDO), the enzyme...

متن کامل

Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift).

A novel haloarchaeal strain, Haloarcula sp. strain D1, grew aerobically on 4-hydroxybenzoic acid (4HBA) as a sole carbon and energy source and is the first member of the domain Archaea reported to do so. Unusually, D1 metabolized 4HBA via gentisic acid rather than via protocatechuic acid, hydroquinone, or catechol. Gentisate was detected in 4HBA-grown cultures, and gentisate 1,2-dioxygenase act...

متن کامل

Genomic and Functional Analyses of the Gentisate and Protocatechuate Ring-Cleavage Pathways and Related 3-Hydroxybenzoate and 4-Hydroxybenzoate Peripheral Pathways in Burkholderia xenovorans LB400

In this study, the gentisate and protocatechuate pathways in Burkholderia xenovorans LB400 were analyzed by genomic and functional approaches, and their role in 3-hydroxybenzoate (3-HBA) and 4-hydroxybenzoate (4-HBA) degradation was proposed. The LB400 genome possesses two identical mhbRTDHI gene clusters encoding the gentisate pathway and one mhbM gene encoding a 3-HBA 6-hydroxylase that conve...

متن کامل

Isolation and characterization of mercuric reductase by newly isolated halophilic bacterium, Bacillus firmus MN8

The current study was aimed at isolating and identifying the halophilic and halotolerant bacteria which can produce mercuric reductase in Gavkhuni wetland in Iran. Moreover, tracking and sequencing merA gene and kinetic properties of mercuric reductase in the selected strain were performed in this study. Soil samples were taken from Gavkhuni wetland and cultured in nutrient agar medium...

متن کامل

Biochemical and genetic characterization of a gentisate 1, 2-dioxygenase from Sphingomonas sp. strain RW5.

A 4,103-bp long DNA fragment containing the structural gene of a gentisate 1,2-dioxygenase (EC 1.13.11.4), gtdA, from Sphingomonas sp. strain RW5 was cloned and sequenced. The gtdA gene encodes a 350-amino-acid polypeptide with a predicted size of 38.85 kDa. Comparison of the gtdA gene product with protein sequences in databases, including those of intradiol or extradiol ring-cleaving dioxygena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015